在线英语听力室

TED演讲 第5期:微软虚拟地球之旅(2)

时间:2018-09-29 08:07:50

搜索关注在线英语听力室公众号:tingroom,领取免费英语资料大礼包。

(单词翻译)

 So a little unknown secret is --  那么, 一个不为人知秘密是 --

did you see the one with the guy, he's got the Web cam?  你有没有看到一个带着网络摄像机的家伙?
The poor PC guy. They're duct taping his head. They're just wrapping it on him.  这个可怜的PC男孩, 头上带着管子, 他们给他包装成那样儿.
Well, a little unknown secret is his brother actually works on the Virtual Earth team.  好, 一个不为人知的秘密是他的哥哥,其实在虚拟地球研发团队工作.
(Laughter). So they've got a little bit of a sibling1 rivalry2 thing going on here.  (笑声). 那么, 那里表达一些兄弟之间对抗的东西.
But let me tell you -- it doesn't affect his day job.  但我告诉你 -- 这没有影响他每天的工作.
We think a lot of good can come from this technology.  我们想像这个科技带来很多的好处.
This was after Katrina. We were the first commercial fleet of airplanes  这是在Katrina飓风之后. 我们曾是灾难区域里的
to be cleared into the disaster impact zone.  第一个商业飞行队.
We flew the area. We imaged it. We sent in people. We took pictures of interiors,  我们飞到那个区域,拍下照片, 发给大家. 我们在灾区深入拍摄图片.
disaster areas. We helped with the first responders, the search and rescue.  我们帮助应急救生员, 搜索和营救.
Often the first time anyone saw what happened to their house was on Virtual Earth.  常常是人们是首先通过虚拟地球看到他们房屋的情况.
We made it all freely available on the Web, just to --  我们通过网络把这些免费提供给所有人, 是为了 -- 你知道,
it was obviously our chance of helping3 out with the cause.  这明显是我们为灾区人们提供帮助的机会.
When we think about how all this comes together,  当我们思考它时, 你知道, 这些东西如何组合到一起的.
it's all about software, algorithms and math.  全是关于软件, 算法和数学.
You know, we capture this imagery but to build the 3-D models  你知道, 我们捕捉图像,但是为了构建三维模型,
we need to do geo-positioning. We need to do geo-registering of the images.  我们需要做地理定位. 我们需要做图片的地理标记.
We have to bundle adjust them. Find tie points.  我们必须收集调整他们. 找到联结点.
Extract geometry from the images.  完全是图像的几何学.
This process is a very calculated process.  这个过程完全是个计算的过程.
In fact, it was always done manual.  实际上, 几乎都是通过人工去计算的.
Hollywood would spend millions of dollars to do a small urban corridor  好莱坞愿意花上百万美金去计算电影中的一个小市区走廊
for a movie because they'd have to do it manually.  因为他们必须用手工计算.
They'd drive the streets with lasers called LIDAR.  他们用激光扫描探测技术在街道上驾驶.
They'd collected information with photos. They'd manually build each building.  他们收集图片信息; 他们手工建造每个大楼.
We do this all through software, algorithms and math --  我们做这些完全通过软件, 算法和数学.
a highly automated4 pipeline5 creating these cities.  一个高度自动化的流水线来建造这些城市.
We took a decimal point off what it cost to build these cities,  我们在建造这些城市的费用上加一个小数点.
and that's how we're going to be able to scale this out and make this reality a dream.  这就是我们为什么能把规模做大并且将现实转化成虚拟.
We think about the user interface6.  我们考虑用户界面.
What does it mean to look at it from multiple perspectives?  采用多视角意味着什么?
An ortho-view, a nadir-view. How do you keep the precision of the fidelity7 of the imagery  一个鸟瞰视角, 一个垂直俯视. 你要如何保持图像的精度的同时
while maintaining the fluidity of the model?  保持模型的流畅性?
I'll wrap up by showing you the --  我会给你展示 --
this is a brand-new peek8 I haven't really shown into the lab area of Virtual Earth.  这是个全新的俯视图我还没有放入虚拟地球的实验室区域.
What we're doing is -- people like this a lot,  我们要做的是 -- 人们喜欢这个
this bird's eye imagery we work with. It's this high resolution data.  我们要做的鸟瞰图. 是高解析度的数据.
But what we've found is they like the fluidity of the 3-D model.  但我们发现他们像三维模型的流畅度.
A child can navigate9 with an Xbox controller or a game controller.  孩子们可以使用Xbox或游戏机去探索.
So here what we're trying to do is we bring the picture and project it into the 3-D model space.  这里,我们正尝试将图片映射到三维模型空间中.
You can see all types of resolution. From here, I can slowly pan the image over.  你可以看到所有的分辨率. 从这里,我可以慢慢平移图像.
I can get the next image. I can blend and transition.  我可以看到下一张图片, 我可以结合和过渡.
By doing this I don't lose the original detail. In fact, I might be recording10 history.  做这些操作时,我不会损失任何细节. 实际上,我有可能在记录历史.
The freshness, the capacity. I can turn this image.  新奇,能力. 我可以转动这个图像.
I can look at it from multiple viewpoints and angles.  我可以查看多视点和多角度.
What we're trying to do is build a virtual world.  我们正在做的是, 打造一个虚拟世界.
We hope that we can make computing11 a user model you're familiar with,  我们希望可以计算出一个你熟悉的用户模型.
and really derive12 insights from you, from all different directions.  可以从你的角度,从所有不同的角度浏览.
I thank you very much for your time.  谢谢.

分享到:

Error Warning!

出错了

Error page: /?aid=451651&mid=3
Error infos: Got error 28 from storage engine
Error sql: select `l`.`tag`,`l`.`index`,`l`.`level_id`,`b`.`id`,`b`.`word`,`b`.`spell`,`b`.`explain`,`b`.`sentence`,`b`.`src` from `new_wordtaglist` `l` left join `new_word_base` `b` on `l`.`tag`=`b`.`word` where `l`.`arc_id`='451651' and `l`.`level_id`>='' group by `b`.`word` order by `l`.`index` asc

本文本内容来源于互联网抓取和网友提交,仅供参考,部分栏目没有内容,如果您有更合适的内容,欢迎 点击提交 分享给大家。